Content
# A2A Session Manager
[](https://www.python.org/downloads/)
[](https://opensource.org/licenses/MIT)
A lightweight, flexible session management system for AI applications.
## Overview
A2A Session Manager provides a comprehensive solution for tracking, persisting, and analyzing AI-based conversations and interactions. Whether you're building a simple chatbot or a complex agent-to-agent system, this library offers the building blocks to manage conversation state, hierarchy, and token usage.
## Features
- **Multiple Storage Backends**: Choose from in-memory, file-based, or Redis storage
- **Hierarchical Sessions**: Create parent-child relationships between sessions
- **Event Tracking**: Record all interactions with detailed metadata
- **Token Usage Monitoring**: Track token consumption and estimate costs
- **Run Management**: Organize sessions into logical execution runs
- **Prompt Building**: Generate optimized prompts from session data using multiple strategies
- **Tool Integration**: Track tool execution with parent-child event relationships
- **Infinite Conversations**: Support for infinitely long conversations through automatic segmentation
- **Extensible Design**: Easily extend with custom storage providers or event types
## Installation
```bash
# Basic installation
pip install a2a-session-manager
# With Redis support
pip install a2a-session-manager[redis]
# With tool processor integration
pip install a2a-session-manager[tools]
# With development tools
pip install a2a-session-manager[dev]
# Full installation with all dependencies
pip install a2a-session-manager[full]
```
## Quick Start
```python
from a2a_session_manager.models.session import Session
from a2a_session_manager.models.session_event import SessionEvent
from a2a_session_manager.models.event_source import EventSource
from a2a_session_manager.storage import SessionStoreProvider, InMemorySessionStore
# Configure storage
store = InMemorySessionStore()
SessionStoreProvider.set_store(store)
# Create a session
session = Session()
# Add an event
session.add_event(SessionEvent(
message="Hello, this is a user message",
source=EventSource.USER
))
# Track token usage
llm_response = "Hello! I'm an AI assistant. How can I help you today?"
llm_event = SessionEvent.create_with_tokens(
message=llm_response,
prompt="Hello, this is a user message",
completion=llm_response,
model="gpt-3.5-turbo",
source=EventSource.LLM
)
session.add_event(llm_event)
# Save session
store.save(session)
# Retrieve session
retrieved_session = store.get(session.id)
```
## Storage Providers
### In-Memory Storage
Ideal for testing and temporary applications:
```python
from a2a_session_manager.storage import InMemorySessionStore, SessionStoreProvider
store = InMemorySessionStore()
SessionStoreProvider.set_store(store)
```
### File-Based Storage
Persists sessions to JSON files:
```python
from a2a_session_manager.storage import create_file_session_store, SessionStoreProvider
store = create_file_session_store(directory="./sessions")
SessionStoreProvider.set_store(store)
```
### Redis Storage
Distributed storage for production applications:
```python
from a2a_session_manager.storage import create_redis_session_store, SessionStoreProvider
store = create_redis_session_store(
host="localhost",
port=6379,
db=0,
key_prefix="session:",
expiration_seconds=86400 # 24 hours
)
SessionStoreProvider.set_store(store)
```
## Token Usage Tracking
```python
# Create an event with automatic token counting
event = SessionEvent.create_with_tokens(
message="This is the assistant's response",
prompt="What is the weather?",
completion="This is the assistant's response",
model="gpt-4-turbo"
)
# Get token usage
print(f"Prompt tokens: {event.token_usage.prompt_tokens}")
print(f"Completion tokens: {event.token_usage.completion_tokens}")
print(f"Total tokens: {event.token_usage.total_tokens}")
print(f"Estimated cost: ${event.token_usage.estimated_cost_usd:.6f}")
```
## Hierarchical Sessions
```python
# Create a parent session
parent = Session()
store.save(parent)
# Create child sessions
child1 = Session(parent_id=parent.id)
store.save(child1)
child2 = Session(parent_id=parent.id)
store.save(child2)
# Navigate hierarchy
ancestors = child1.ancestors()
descendants = parent.descendants()
```
## Session Runs
```python
# Create a session
session = Session()
# Start a run
run = SessionRun()
session.runs.append(run)
run.mark_running()
# Add events to the run
session.events.append(
SessionEvent(
message="Processing your request...",
task_id=run.id
)
)
# Complete the run
run.mark_completed()
```
## Prompt Builder
Generate optimized prompts from session data for LLM calls using various strategies:
```python
from a2a_session_manager.prompts import build_prompt_from_session, PromptStrategy
# Get a session
session = store.get(session_id)
# Build a prompt using different strategies
minimal_prompt = build_prompt_from_session(session, PromptStrategy.MINIMAL)
conversation_prompt = build_prompt_from_session(session, PromptStrategy.CONVERSATION)
tool_focused_prompt = build_prompt_from_session(session, PromptStrategy.TOOL_FOCUSED)
hierarchical_prompt = build_prompt_from_session(
session,
PromptStrategy.HIERARCHICAL,
include_parent_context=True
)
# Token-aware prompt building
from a2a_session_manager.prompts import truncate_prompt_to_token_limit
# Ensure the prompt fits within token limits
truncated_prompt = truncate_prompt_to_token_limit(
conversation_prompt,
max_tokens=4000,
model="gpt-4-turbo"
)
```
### Prompt Strategies
- **MINIMAL**: Includes only essential context (first user message, latest assistant response, and tool results)
- **TASK_FOCUSED**: Emphasizes the original task with minimal context
- **TOOL_FOCUSED**: Prioritizes tool usage information
- **CONVERSATION**: Includes more conversation history for a natural flow
- **HIERARCHICAL**: Leverages parent session context for multi-session conversations
## Infinite Conversations
Support for infinitely long conversations through automatic session segmentation and summarization:
```python
from a2a_session_manager.infinite_conversation import (
InfiniteConversationManager,
SummarizationStrategy
)
# Create an infinite conversation manager
manager = InfiniteConversationManager(
token_threshold=6000, # Create new segment when threshold is reached
summary_model="gpt-3.5-turbo", # Model to use for summaries
summarization_strategy=SummarizationStrategy.TOPIC_BASED # Summarization approach
)
# Process a message and get the current session ID
async def process_user_message(session_id, message):
# LLM callback for summaries
async def llm_callback(messages, model):
# Your implementation to call an LLM API
return await call_llm_api(messages, model)
# Process the message, possibly creating a new segment
current_session_id = await manager.process_message(
session_id,
message,
EventSource.USER,
llm_callback
)
return current_session_id
# Get context for an LLM call that spans multiple segments
context = manager.build_context_for_llm(session_id)
# Retrieve the full conversation history across all segments
history = manager.get_full_conversation_history(session_id)
```
### Summarization Strategies
- **BASIC**: General conversation summary
- **KEY_POINTS**: Extracts key points and important information
- **QUERY_FOCUSED**: Emphasizes user questions and interests
- **TOPIC_BASED**: Organizes the summary by conversation topics
## Session-Aware Tool Processing
Track tool execution within your sessions using the SessionAwareToolProcessor:
```python
from a2a_session_manager.session_aware_tool_processor import SessionAwareToolProcessor
from your_tool_package import ToolProcessor # Your tool execution framework
# Create a session-aware tool processor
processor = SessionAwareToolProcessor(
session_id="your_session_id",
max_llm_retries=2,
llm_retry_prompt="Please provide a valid tool call."
)
# Process LLM response with tool calls
async def llm_call_fn(retry_prompt):
# Your LLM call implementation
return await call_llm_with_prompt(retry_prompt)
# Process the LLM response
llm_response = {
"tool_calls": [
{
"type": "function",
"function": {
"name": "get_weather",
"arguments": '{"location": "New York"}'
}
}
]
}
# Tool results will be automatically added to the session
results = await processor.process_llm_message(llm_response, llm_call_fn)
```
The SessionAwareToolProcessor:
- Wraps tool execution in a session run
- Records the original LLM response
- Creates child events for each tool call
- Handles retries when needed
- Properly marks success and failure states
## Examples
See the `examples/` directory for complete usage examples:
- `session_example.py`: Basic session management
- `token_tracking_example.py`: Token usage monitoring
- `session_prompt_builder.py`: Building LLM prompts from sessions
- `session_aware_tool_processor.py`: Integrating tool execution with sessions
- `example_infinite_conversation.py`: Managing infinitely long conversations
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## License
This project is licensed under the MIT License - see the LICENSE file for details.